If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2=13u
We move all terms to the left:
5u^2-(13u)=0
a = 5; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·5·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*5}=\frac{0}{10} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*5}=\frac{26}{10} =2+3/5 $
| -100x^2-2x+8=0 | | 22.36+4.37c=64.93 | | 4r2–9=9 | | r2+10r-96=0 | | 3x+20/x=6x | | 1/2(2t+4)=2t-4 | | 8-2x=100x^2 | | X^2+2.6x+0.56=0 | | 12x+24=124 | | (5x+7)=(3x+4) | | 2,6x+0,56+x^2=0 | | 5r^2-48=34r | | 12k+1=8k-2 | | y–7=3+2y | | 4x+3+1x=x+11 | | x+4+4x=x+12 | | m+4.8=7.7 | | -16-17=-5x-6x | | 92+28=9x+6x | | (y)^2=4X | | x(x-1)+1=5/6+(x(2x-1))/3 | | -29+113=4x+8x | | F(x)=2.15(2x^-4x-6) | | 2/5(25x+35)-11=2/3(9x-24) | | 7x+8-3=19 | | 4y+12=2y+36 | | 4x+18-3=8 | | 7x-(4x-9)=15 | | k2–19k=0 | | ^2x-3-^x-2=1 | | h2+33h=0 | | -8x-6x=-15+113 |